Sony Enhances IR Sensitivity by 80% with Pyramidal Structure

Sony publishes an open access paper in Nature Journal "IR sensitivity enhancement of CMOS Image Sensor with diffractive light trapping pixels" by Sozo Yokogawa, Itaru Oshiyama, Harumi Ikeda, Yoshiki Ebiko, Tomoyuki Hirano, Suguru Saito, Takashi Oinoue, Yoshiya Hagimoto & Hayato Iwamoto. From the abstract:

"We report on the IR sensitivity enhancement of back-illuminated CMOS Image Sensor (BI-CIS) with 2-dimensional diffractive inverted pyramid array structure (IPA) on crystalline silicon (c-Si) and deep trench isolation (DTI)... A prototype BI-CIS sample with pixel size of 1.2 μm square containing 400 nm pitch IPAs shows 80% sensitivity enhancement at λ = 850 nm compared to the reference sample with flat surface. This is due to diffraction with the IPA and total reflection at the pixel boundary."


The papers's conclusion:

"A novel BI-CIS with IPA on c-Si surface for light trapping pixel technology is proposed and the prototyping results are demonstrated. Both spectroscopic measurements and demo images show considerable NIR sensitivity enhancement with small spatial resolution degradation. BI-CIS with 400 nm pitch IPA surface and DTI shows 80% improvement in sensitivity, which corresponds to QE of more than 30% at 850 nm for a 3 μm thick c-Si photodetector. Furthermore, it is worth noting that there is still a lot of room for improvement toward the fundamental limit of 4n^2. Additionally, it is important to control surface passivation to minimize the degradation of thermal noise and also further improve pixel isolation to reduce lateral color crosstalk as small as possible."

Related Posts :

0 Response to "Sony Enhances IR Sensitivity by 80% with Pyramidal Structure"

Post a Comment